β2 -Microglobulin-deficient NK cells show increased sensitivity to MHC class I-mediated inhibition,but self tolerance does not depend upon target cell expression of H-2Kb and Db heavy chains |
| |
Authors: | Petter Hö glund,Rickard Glas,Carine Mé nard,Anna Kå se,Maria H. Johansson,Lars Franksson,Franç ois Lemmonier,Klas Kä rre |
| |
Abstract: | Mice lacking β2 -microglobulin (β2 m− mice) express greatly reduced levels of MHC class I molecules, and cells from β2 m− mice are therefore highly sensitive NK cells. However, NK cells from β2 m− mice fail to kill β2 m− normal cells, showing that they are self tolerant. In a first attempt to understand better the basis of this tolerance, we have analyzed more extensively the target cell specificity of β2 m− NK cells. In a comparison between several MHC class I-deficient and positive target cell pairs for sensitivity to β2 m− NK cells, we made the following observations: First, β2 m− NK cells displayed a close to normal ability to kill a panel of MHC class I-deficient tumor cells, despite their nonresponsiveness to β2 m− concanavalin A (Con A)-activated T cell blasts. Secondly, β2 m− NK cells were highly sensitive to MHC class I-mediated inhibition, in fact more so than β2 m+ NK cells. Third β2 m− NK cells were not only tolerant to β2 m− Con A blasts but also to Con A blasts from H-2Kb − /Db − double deficient mice in vitro. We conclude that NK cell tolerance against MHC class I-deficient targets is restricted to nontransformed cells and independent of target cell expression of MHC class I free heavy chains. The enhanced ability of β2 m− NK cells to distinguish between MHC class I-negative and -positive target cells may be explained by increased expression of Ly49 receptors, as described previously. However, the mechanisms for enhanced inhibition by MHC class I molecules appear to be unrelated to self tolerance in β2 m− mice, which may instead operate through mechanisms involving triggering pathways. |
| |
Keywords: | NK cells β 2 m deficiency MHC class I molecule NK cell tolerance |
|
|