首页 | 本学科首页   官方微博 | 高级检索  
检索        


Human endothelial cell interaction with biomimetic surfactant polymers containing Peptide ligands from the heparin binding domain of fibronectin
Authors:Sagnella Sharon  Anderson Eric  Sanabria Naomi  Marchant Roger E  Kottke-Marchant Kandice
Institution:Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA.
Abstract:Biomimetic materials that mimic the extracellular matrix (ECM) provide a means to control cellular functions such as adhesion and growth, which are vital to successful engineering of tissue-incorporated biomaterials. Novel "ECM-like" biomimetic surfactant polymers consisting of a poly(vinyl amine) backbone with pendant cell-adhesive peptides derived from one of the heparin-binding domains of fibronectin were developed to improve endothelial cell adhesion and growth on vascular biomaterials. Heparin-binding peptide (HBP) sequences, alone and in combination with RGD peptides, were examined for their ability to promote human pulmonary artery endothelial cell (HPAEC) adhesion and growth (HBP1, WQPPRARI; HBP2, SPPRRARVT; HBP1:RGD; and HBP2:RGD) and compared with cell adhesion and growth on fibronectin and on negative control polymer surfaces in which alanines were substituted for the positively charged arginine residues in the two peptides. The results showed that HPAECs adhered and spread equally well on all HBP-containing polymers and the positive fibronectin control, showing similar stress fiber and focal adhesion formation. However, the HBP alone was unable to support long-term HPAEC growth and survival, showing a loss of focal adhesions and cytoskeletal disorganization by 24 h after seeding. With the addition of RGD, the surfaces behaved similarly or better than fibronectin. The negative control polymers showed little to no initial cell attachment, and the addition of soluble heparin to the medium reduced initial cell adhesion on both the HBP2 and HBP2:RGD surfaces. These results indicate that the HBP surfaces promote initial HPAEC adhesion and spreading, but not long-term survival.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号