首页 | 本学科首页   官方微博 | 高级检索  
     


Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles
Authors:Christiansen Jonathan P  French Brent A  Klibanov Alexander L  Kaul Sanjiv  Lindner Jonathan R
Affiliation:

* Cardiovascular Division, University of Virginia School of Medicine, Charlottesville, VA, USA

Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA

Abstract:The aim of this study was to assess the relative efficacy and mechanism of gene transfection by ultrasound (US) destruction of plasmid-bearing microbubbles. Luciferase reporter plasmid was charge-coupled to cationic lipid microbubbles. Rat hindlimb skeletal muscle was exposed to intermittent high-power US during dose-adjusted intra-arterial (IA) or IV administration of plasmid-bearing microbubbles via the carotid artery or jugular vein, respectively. At 4 days, luciferase activity in US-exposed skeletal muscle was 200-fold greater with IA than with IV administration of plasmid-bearing microbubbles, and was similar to transfection achieved by IM injection of plasmid (positive control). No transfection occurred with US and IA injection of plasmid alone. Intravital microscopy of the cremaster muscle in mice following administration of microbubbles and US exposure demonstrated perivascular deposition of fluorescent plasmid, the extent of which was twofold greater for IA compared to IV injection. Electron microscopy demonstrated a greater extent of myocellular microporations in US-exposed muscle after IA injection of microbubbles. We conclude that muscle transfection by US destruction of plasmid-bearing cationic microbubbles is amplified by IA, rather than IV, injection of microbubbles due to greater extravascular deposition of plasmid and to greater extent of myocellular microporation. (E-mail: jlindner@virginia.edu)
Keywords:Contrast agents   Contrast ultrasound   Gene delivery   Microbubbles   Plasmid   Ultrasound
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号