首页 | 本学科首页   官方微博 | 高级检索  
     


Strategies and determinants for selection of alternate foot placement during human locomotion: influence of spatial and temporal constraints
Authors:Renato?Moraes,M.?Anthony?Lewis,Aftab?E.?Patla  author-information"  >  author-information__contact u-icon-before"  >  mailto:patla@healthy.uwaterloo.ca"   title="  patla@healthy.uwaterloo.ca"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Gait & Posture Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada;(2) Iguana Robotics Inc., PO Box 628,, Moahomet, IL 61853, USA
Abstract:During locomotion in a cluttered terrain, certain terrain surfaces such as an icy one are not appropriate for foot placement; an alternate choice is required. In a previous study we showed that the selection of foot placement is not random but systematic; the dominant choices made are not uniquely defined by the available or predicted sensory inputs. We argued that selection is guided by specific rules and involves minimal displacement of the foot from its normal landing spot. The experimental protocol involved implicit spatial constraint by requiring individuals to step on the force plate that could trigger a lighted area to be avoided, thereby requiring individuals to respond within one step-cycle. Alternate foot placement was visually identified, but not measured. The purpose of this study was to directly measure foot placement, validate and/or refine the rules used to guide selection, and identify whether the alternate foot placement choices are influenced by spatial and temporal constraints on response selection. The area to be avoided was visible from the start and therefore individuals could plan and implement appropriate avoidance strategies without any temporal constraint. Spatial constraint introduced in this experiment included requirement both to step on a specific location and to avoid stepping on a specific location on the next step. The results provide support for the rules previously identified in guiding foot placement to an alternate location. Minimal displacement of the foot from its normal landing spot was validated as an important factor for selecting alternate foot placement. When several choices satisfied this factor, additional factors guide alternate foot placement. Modifications in the plane of progression are preferred while stepping wide is avoided. When no temporal constraints are imposed on the response selection, enhancing forward progression of the body becomes the dominant determinant followed by stability and lastly by energy costs associated with the modifications. A decision algorithm for selecting foot placement is proposed based on these findings. It is clear that while visual input plays a critical role in guiding foot placement, it is not entirely based on reactive control. This has implications for implementing visually guided adaptive locomotion in legged robots.
Keywords:Foot placement  Spatial constraint  Temporal constraint  Adaptive locomotion
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号