首页 | 本学科首页   官方微博 | 高级检索  
     


CD8alpha alpha memory effector T cells descend directly from clonally expanded CD8alpha +beta high TCRalpha beta T cells in vivo
Authors:Konno Akihiro  Okada Kanae  Mizuno Kazunori  Nishida Mika  Nagaoki Shuya  Toma Tomoko  Uehara Takahiro  Ohta Kazuhide  Kasahara Yoshihito  Seki Hidetoshi  Yachie Akihiro  Koizumi Shoichi
Affiliation:Department of Pediatrics, Angiogenesis and Vascular Development, Graduate School of Medical Science and School of Medicine, Kanazawa University, Japan.
Abstract:Whereas most peripheral CD8(+) alphabeta T cells highly express CD8alphabeta heterodimer in healthy individuals, there is an increase of CD8alpha(+)beta(low) or CD8alphaalpha alphabeta T cells in HIV infection or Wiskott-Aldrich syndrome and after bone marrow transplantation. The significance of these uncommon cell populations is not well understood. There has been some question as to whether these subsets and CD8alpha(+)beta(high) cells belong to different ontogenic lineages or whether a fraction of CD8alpha(+)beta(high) cells have down-regulated CD8beta chain. Here we assessed clonality of CD8alphaalpha and CD8alpha(+)beta(low) alphabeta T cells as well as their phenotypic and functional characteristics. Deduced from surface antigens, cytotoxic granule constituents, and cytokine production, CD8alpha(+)beta(low) cells are exclusively composed of effector memory cells. CD8alphaalpha cells comprise effector memory cells and terminally differentiated CD45RO(-)CCR7(-) memory cells. T-cell receptor (TCR) Vbeta complementarity-determining region 3 (CDR3) spectratyping analysis and subsequent sequencing of CDR3 cDNA clones revealed polyclonality of CD8alpha(+)beta(high) cells and oligoclonality of CD8alpha(+)beta(low) and CD8alphaalpha cells. Importantly, some expanded clones within CD8alphaalpha cells were also identified within CD8alpha(+)beta(high) and CD8alpha(+)beta(low) subpopulations. Furthermore, signal-joint TCR rearrangement excision circles concentration was reduced with the loss of CD8beta expression. These results indicated that some specific CD8alpha(+)beta(high) alphabeta T cells expand clonally, differentiate, and simultaneously down-regulate CD8beta chain possibly by an antigen-driven mechanism. Provided that antigenic stimulation directly influences the emergence of CD8alphaalpha alphabeta T cells, these cells, which have been previously regarded as of extrathymic origin, may present new insights into the mechanisms of autoimmune diseases and immunodeficiencies, and also serve as a useful biomarker to evaluate the disease activities.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Blood》浏览原始摘要信息
点击此处可从《Blood》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号