首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of the Quasi-Static and Dynamic Fracture of the Silica Refractory Using the Mesoscale Discrete Element Modelling
Authors:Aleksandr S. Grigoriev  Andrey V. Zabolotskiy  Evgeny V. Shilko  Andrey I. Dmitriev  Kirill Andreev
Affiliation:1.Institute of Strength Physics and Materials Science of Siberian Branch of the Russian Academy of Sciences (ISPMS SB RAS), 2/4, pr. Akademicheskii, 634055 Tomsk, Russia;2.Magnezit Group, 34, St. Solnechnaya, 456910 Satka, Russia;3.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology (WUST), 947 Heping Ave., Wuhan 430081, China;4.Ceramic Research Centre, Tata Steel, 211 Rooswijkweg, 1951 MD Velsen Noord, The Netherlands
Abstract:Computer modelling is a key tool in the optimisation and development of ceramic refractories utilised as insulation in high-temperature industrial furnaces and reactors. The paper is devoted to the mesoscale computer modelling of silica refractories using the method of homogeneously deformable discrete elements. Approaches to determine the local mechanical properties of the constituents from the global experimental failure parameters and respective crack trajectories are considered. Simulations of the uniaxial compressive and tensile failure in a wide range of quasi-static and dynamic loading rates (102 s−1) are performed. The upper limit of the dynamic loading rates corresponds to the most severe loading rates during the scrap loading on the refractory lining. The dependence of the strength, fracture energy, and brittleness at failure on the loading rate is analysed. The model illustrates that an increase in the loading rate is accompanied by a significant change in the mechanical response of the refractory, including a decrease in the brittleness at failure, a more dispersed failure process, and a higher fraction of the large grain failure. The variation of the grain–matrix interface’s strength has a higher impact on the static compressive than on the static tensile properties of the material, while the material’s dynamic tensile properties are more sensitive to the interface strength than the dynamic compressive properties.
Keywords:refractories   dynamic loading   fracture   mesoscale computer simulation   discrete element method (DEM)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号