首页 | 本学科首页   官方微博 | 高级检索  
检索        


Thin Films of Nanocrystalline Fe(pz)[Pt(CN)4] Deposited by Resonant Matrix-Assisted Pulsed Laser Evaporation
Authors:Dominik Maskowicz  Rafa&#x; Jendrzejewski  Wioletta Kope&#x;  Maria Gazda  Jakub Karczewski  Pawe&#x; Niedzia&#x;kowski  Armin Kleibert  Carlos A F Vaz  Yann Garcia  Miros&#x;aw Sawczak
Abstract:Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)PtCN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser–target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)PtCN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.
Keywords:temperature-dependent spin crossover  matrix-assisted pulsed laser evaporation  Fe(pz)[Pt(CN)4]  resonant pulsed laser ablation  materials characterization  SOXIESST effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号