首页 | 本学科首页   官方微博 | 高级检索  
     


CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations
Authors:Hesson Luke B  Wilson Robin  Morton Dion  Adams Clare  Walker Mike  Maher Eamonn R  Latif Farida
Affiliation:Section of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
Abstract:We report in silico identification and characterisation of a novel member of the ras association domain family 1 (RASSF1)/NORE1 family, namely, RASSF2, located at chromosomal region 20p13. It has three isoforms, all contain a ras association domain in the C-terminus. The longest isoform RASSF2A contains a 5' CpG island. RASSF2A was cloned from a brain cDNA library and directly sequenced, confirming the genomic gene structure. In previous reports, we and others have demonstrated that RASSF1A is epigenetically inactivated in a variety of cancers, including sporadic colorectal cancer (CRC). In the present report, we analysed the methylation status of RASSF2A promoter region CpG island in sporadic CRC and compared it to K-ras mutation status. RASSF2A promoter region CpG island was hypermethylated in a majority of colorectal tumour cell lines (89%) and in primary colorectal tumours (70%), while DNA from matched normal mucosa was found to be unmethylated (tumour-specific methylation). RASSF2A expression was reactivated in methylated tumour cell lines after treatment with 5-aza 2-deoxycytidine. RASSF2A methylation is an early event, detectable in 7/8 colon adenomas. Furthermore, 75% of colorectal tumours with RASSF2A methylation had no K-ras mutations (codons, 12 and 13) (P=0.048), Fisher's exact test). Our data demonstrate that RASSF2A is frequently inactivated in CRCs by CpG island promoter hypermethylation, and that epigenetic (RASSF2A) and genetic (K-ras) changes are mutually exclusive and provide alternative pathways for affecting Ras signalling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号