首页 | 本学科首页   官方微博 | 高级检索  
     


High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla
Authors:Barth Markus  Nöbauer-Huhmann Iris-Melanie  Reichenbach Jürgen R  Mlynárik Vladimir  Schöggl Andreas  Matula Christian  Trattnig Siegfried
Affiliation:Department of Radiology, University and General Hospital Vienna, Austria. markus.bath@univie.ac.be
Abstract:RATIONALE AND OBJECTIVES: To evaluate the clinical potential of high-resolution 3D contrast-enhanced blood oxygenation level-dependent MR-Venography (CE-MRV) for primary brain tumors and metastases at 3 Tesla (T) in comparison to 1.5 T. METHODS: Eighteen patients with brain tumors were examined using CE-MRV after application of a standard dose of MRI contrast agent (0.1 mmol/kg gadodiamide). CE-MRV is based on a high-resolution 3D flow-compensated gradient-echo sequence with long echo times that uses the contrast-enhanced blood oxygenation level-dependent effect. This technique was performed using the same volume coverage and acquisition time at both field strengths after performing standard imaging sequences. RESULTS: The higher spatial resolution of CE-MRV at 3 T showed more details within and around tumors than at 1.5 T. Visibility was enhanced by stronger susceptibility weighting and higher intrinsic signal-to-noise at 3 T. Compared with standard imaging protocols, additional information characterized as tubular and nontubular hypointense structures were found within or around lesions on CE-MRV images. CONCLUSIONS: Acquisition of CE-MRV data at 3 T enables spatial resolution to be increased within the same measurement time and with the same volume coverage compared with 1.5 T, thus providing more detailed information. The method may also show the potential to estimate oxygen supply of tumors, especially at high field strengths.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号