首页 | 本学科首页   官方微博 | 高级检索  
     


Bronchiolar Remodeling in Adult Mice Following Neonatal Exposure to Hyperoxia: Relation to Growth
Authors:Megan O'Reilly  Philip M. Hansbro  Jay C. Horvat  Emma L. Beckett  Richard Harding  Foula Sozo
Affiliation:1. Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia;2. Priority Research Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
Abstract:Preterm infants who receive supplemental oxygen for prolonged periods are at increased risk of impaired lung function later in life. This suggests that neonatal hyperoxia induces persistent changes in small conducting airways (bronchioles). Although the effects of neonatal hyperoxia on alveolarization are well documented, little is known about its effects on developing bronchioles. We hypothesized that neonatal hyperoxia would remodel the bronchiolar walls, contributing to altered lung function in adulthood. We studied three groups of mice (C57BL/6J) to postnatal day 56 (P56; adulthood) when they either underwent lung function testing or necropsy for histological analysis of the bronchiolar wall. One group inhaled 65% O2 from birth until P7, after which they breathed room air; this group experienced growth restriction (HE+GR group). We also used a group in which hyperoxia‐induced GR was prevented by dam rotation (HE group). A control group inhaled room air from birth. At P56, the bronchiolar epithelium of HE mice contained fewer Clara cells and more ciliated cells, and the bronchiolar wall contained ~25% less collagen than controls; in HE+GR mice the bronchiolar walls had ~13% more collagen than controls. Male HE and HE+GR mice had significantly thicker bronchiolar epithelium than control males and altered lung function (HE males: greater dynamic compliance; HE+GR males: lower dynamic compliance). We conclude that neonatal hyperoxia remodels the bronchiolar wall and, in adult males, affects lung function, but effects are altered by concomitant growth restriction. Our findings may partly explain the reports of poor lung function in ex‐preterm children and adults. Anat Rec, 297:758–769, 2014. © 2014 Wiley Periodicals, Inc.
Keywords:bronchioles  epithelium  airway smooth muscle  collagen  hyperoxia  lung function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号