首页 | 本学科首页   官方微博 | 高级检索  
     


Cell Biology of Sarcomeric Protein Engineering: Disease Modeling and Therapeutic Potential
Authors:Brian R. Thompson  Joseph M. Metzger
Affiliation:Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
Abstract:The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins, held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure–function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia‐mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia‐resistant histidine‐button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults, or neutralize altered sarcomeric function in disease. Anat Rec, 297:1663–1669, 2014. © 2014 Wiley Periodicals, Inc.
Keywords:acute genetic engineering  myofilament, troponin  calcium sensitivity  sarcomere  molecular dynamics  adult cardiac myocytes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号