首页 | 本学科首页   官方微博 | 高级检索  
     


fMRI-acoustic noise alters brain activation during working memory tasks
Authors:Tomasi D  Caparelli E C  Chang L  Ernst T
Affiliation:Medical Department, Bldg. 490, Brookhaven National Laboratory, 30 Bell Avenue, Upton, NY 11973, USA. tomasi@bnl.gov
Abstract:Scanner noise during functional magnetic resonance imaging (fMRI) may interfere with brain function and change blood oxygenation level dependent (BOLD) signals, a problem that generally worsens at the higher field strengths. Therefore, we studied the effect of increased acoustic noise on fMRI during verbal working memory (WM) processing. The sound pressure level of scanner noise was increased by 12 dBA from "Quiet" to "Loud" echo planar imaging (EPI) scans by utilizing resonant vibration modes of the gradient coil. A WM paradigm with graded levels of task difficulty was used to further access WM load. Increased scanner noise produced increased BOLD responses (percent signal change) bilaterally in the cerebellum, inferior (IFG), medial (medFG), and superior (SFG) frontal, fusiform (FusG), and the lingual (LG) gyri, and decreased BOLD responses bilaterally in the anterior cingulate gyrus (ACG) and the putamen. This finding suggests greater recruitment of attention resources in these brain regions, probably to compensate for interference due to louder scanner noise. Increased working memory load increased the BOLD signals in IFG and the cerebellum, but decreased the BOLD signals in the putamen and the LG. These findings also support the idea that brain function requires additional attention resources under noisier conditions. Load- and acoustic-noise-related changes in BOLD responses correlated negatively in the WM network. This study demonstrates that MR noise affects brain activation pattern. Future comparisons between studies performed under different acoustic conditions (due to differing magnetic field strengths, pulse sequences, or scanner manufacturers) might require knowledge of the sound pressure level of acoustic noise during fMRI.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号