首页 | 本学科首页   官方微博 | 高级检索  
     


The merits of breaking the matches: a cautionary tale
Authors:Donner Allan  Taljaard Monica  Klar Neil
Affiliation:Department of Epidemiology and Biostatistics, Schulich School of Medicine, University of Western Ontario, London, Canada. donner@biostats.uwo.ca
Abstract:Matched-pair cluster randomization trials are frequently adopted as the design of choice for evaluating an intervention offered at the community level. However, previous research has demonstrated that a strategy of breaking the matches and performing an unmatched analysis may be more efficient than performing a matched analysis on the resulting data, particularly when the total number of communities is small and the matching is judged as relatively ineffective.The research concerning this question has naturally focused on testing the effect of intervention. However, a secondary objective of many community intervention trials is to investigate the effect of individual-level risk factors on one or more outcome variables. Focusing on the case of a continuous outcome variable, we show that the practice of performing an unmatched analysis on data arising from a matched-pair design can lead to bias in the estimated regression coefficient, and a corresponding test of significance which is overly liberal. However, for large-scale community intervention trials, which typically recruit a relatively small number of large clusters, such an analysis will generally be both valid and efficient.We also consider other approaches to testing the effect of an individual-level risk factor in a matched-pair cluster randomization design, including a generalized linear model approach that preserves the matching, a two-stage cluster-level analysis, and an approach based on generalized estimating equations.
Keywords:cluster randomization  community intervention trial  regression analysis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号