首页 | 本学科首页   官方微博 | 高级检索  
检索        


Contrasting roles of the N-methyl-D-aspartate receptor in the production of immobilization by conventional and aromatic anesthetics
Authors:Eger Edmond I  Liao Mark  Laster Michael J  Won Albert  Popovich John  Raines Douglas E  Solt Ken  Dutton Robert C  Cobos Franklin V  Sonner James M
Institution:Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0464, USA. egere@anesthesia.ucsf.edu
Abstract:We hypothesized that N-methyl-d-aspartate (NMDA) receptors mediate some or all of the capacity of inhaled anesthetics to prevent movement in the face of noxious stimulation, and that this capacity to prevent movement correlates directly with the in vitro capacity of such anesthetics to block the NMDA receptor. To test this hypothesis, we measured the effect of IV infusion of the NMDA blockers dizocilpine (MK-801) and (R)-4-(3-phosphonopropyl) piperazine-2-carboxylic acid (CPP) to decrease the MAC (the minimum alveolar concentration of anesthetic that prevents movement in 50% of subjects given a noxious stimulation) of 8 conventional anesthetics (cyclopropane, desflurane, enflurane, halothane, isoflurane, nitrous oxide, sevoflurane, and xenon) and 8 aromatic compounds (benzene, fluorobenzene, o-difluorobenzene, p-difluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, pentafluorobenzene, and hexafluorobenzene) and, for comparison, etomidate. We postulated that MK-801 or CPP infusions would decrease MAC in inverse proportion to the in vitro capacity of these anesthetics to block the NMDA receptor. This notion proved correct for the aromatic inhaled anesthetics, but not for the conventional anesthetics. At the greatest infusion of MK-801 (32 microg x kg(-1) x min(-1)) the MACs of conventional anesthetics decreased by 59.4 +/- 3.4% (mean +/- sd) and at 8 microg x kg(-1) x min(-1) by 45.5 +/- 4.2%, a decrease not significantly different from a 51.4 +/- 19.0% decrease produced in the EC50 for etomidate, an anesthetic that acts solely by enhancing gamma-amino butyric acid (GABA) receptors. We conclude that some aromatic anesthetics may produce immobility in the face of noxious stimulation by blocking the action of glutamate on NMDA receptors but that conventional inhaled anesthetics do not.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号