首页 | 本学科首页   官方微博 | 高级检索  
     


Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle.
Authors:Y Kida   A Esposito-Del Puente   C Bogardus     D M Mott
Affiliation:Clinical Diabetes and Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85016.
Abstract:Insulin-stimulated glycogen synthase activity in human skeletal muscle correlates with insulin-mediated glucose disposal rate (M) and is reduced in insulin-resistant subjects. We have previously reported reduced insulin-stimulated glycogen synthase activity associated with reduced fasting glycogen synthase phosphatase activity in skeletal muscle of insulin-resistant Pima Indians. In this study we investigated the time course for insulin stimulation of glycogen synthase and synthase phosphatase during a 2-h high-dose insulin infusion (600 mU/min per m2) in six insulin-sensitive caucasians (group S) and in five insulin-resistant Pima Indians (group R). Percutaneous muscle biopsies were obtained from the quadriceps femoris muscle after insulin infusion for 0, 10, 20, 40, and 120 min. In group S, insulin-stimulated glycogen synthase activity increased with time and was significantly higher than in group R. In group S, synthase phosphatase activity increased significantly by 25% at 10 min and then decreased gradually. No significant change in synthase phosphatase was seen in group R and activity was lower than group S at 0 to 20 min. These data suggest that a low basal synthase phosphatase activity and a defect in its response to insulin explain, at least in part, reduced insulin stimulation of skeletal muscle glycogen synthase associated with insulin resistance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号