首页 | 本学科首页   官方微博 | 高级检索  
     


Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced vascular dysfunction
Authors:Chrissobolis Sophocles  Didion Sean P  Kinzenbaw Dale A  Schrader Laura I  Dayal Sanjana  Lentz Steven R  Faraci Frank M
Affiliation:Department of Internal Medicine, Cardiovascular Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1081, USA.
Abstract:Levels of reactive oxygen species, including hydrogen peroxide(,) increase in blood vessels during hypertension and in response to angiotensin II (Ang II). Although glutathione peroxidases are known to metabolize hydrogen peroxide, the role of glutathione peroxidase during hypertension is poorly defined. We tested the hypothesis that glutathione peroxidase-1 protects against Ang II-induced endothelial dysfunction. Responses of carotid arteries from Gpx1-deficient (Gpx1(+/-) and Gpx1(-/-)) and Gpx1 transgenic mice, and their respective littermate controls, were examined in vitro after overnight incubation with either vehicle or Ang II. Under control conditions, relaxation to acetylcholine (ACh; an endothelium-dependent agonist) was similar in control, Gpx1(+/-), and Gpx1 transgenic mice, whereas in Gpx1(-/-) mice, responses to ACh were impaired. In control mice, ACh-induced vasorelaxation was not affected by 1 nmol/L of Ang II. In contrast, relaxation to ACh in arteries from Gpx1(+/-) mice was inhibited by approximately 60% after treatment with 1 nmol/L of Ang II, indicating that Gpx1 haploinsufficiency markedly enhances Ang II-induced endothelial dysfunction. A higher concentration of Ang II (10 nmol/L) selectively impaired relaxation to ACh in arteries from control mice, and this effect was prevented in arteries from Gpx1 transgenic mice or in arteries from control mice treated with polyethylene glycol-catalase (which degrades hydrogen peroxide). Thus, genetic and pharmacological evidence suggests a major role for glutathione peroxidase-1 and hydrogen peroxide in Ang II-induced effects on vascular function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号