首页 | 本学科首页   官方微博 | 高级检索  
检索        


Picroside II Exerts a Neuroprotective Effect by Inhibiting mPTP Permeability and EndoG Release after Cerebral Ischemia/Reperfusion Injury in Rats
Authors:Shan Li  Tingting Wang  Li Zhai  Keli Ge  Jun Zhao  Weihong Cong  Yunliang Guo
Institution:1.Institute of Cerebrovascular Diseases,Affiliated Hospital of Qingdao University, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province,Qingdao,China;2.Institute of Integrative Medicine,Qingdao University Medical College,Qingdao,China;3.Xiyuan Hospital,China Academy of Chinese Medical Sciences,Beijing,China
Abstract:Mitochondrial membrane permeability is closely related to cerebral ischemia/reperfusion (I/R) injury. This paper explored the neuroprotective effect of picroside II (Picr), which inhibits the permeability of mitochondrial permeability transition pore (mPTP) and endonuclease G (EndoG) release from mitochondria into cytoplasm after cerebral I/R in rats. After 2 h of cerebral ischemia and 24 h of reperfusion in rats with different intervention measures, the neurobehavioral function, infarction volume, and reactive oxygen species (ROS) content in brain tissues were observed by modified neurological severity scale (mNSS), triphenyl tetrazolium chloride (TTC) staining, and enzyme-linked immunosorbent assay, respectively. The permeability of mPTP was assayed using spectrophotometry. The morphology and apoptotic cells of brain tissues were observed by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay, respectively. The expressions of EndoG and voltage-dependent anion channel 1 (VDAC1) were determined by immunohistochemical assay and western blot. The Picr group exhibited clear decreases in mNSS scores, ROS content, number of apoptotic cells, mPTP permeability and expression of VDAC1, and EndoG in cytoplasm and nuclei, and the morphology of brain tissue was improved as compared with the model group (P?<?0.05). Picr could attenuate cerebral I/R injury by downregulating the expression of VDAC1 and decreasing the permeability of mPTP, thereby inhibiting EndoG release from mitochondria into cytoplasm.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号