首页 | 本学科首页   官方微博 | 高级检索  
检索        


CTLA4‐Ig inhibits allergic airway inflammation by a novel CD28‐independent,nitric oxide synthase‐dependent mechanism
Authors:Christine M Deppong  Amit Parulekar  Jonathan S Boomer  Traci L Bricker  Jonathan M Green
Institution:Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
Abstract:The T‐cell response to antigen depends on coordinate signaling between costimulatory and inhibitory receptors. The altered function of either may underlie the pathophysiology of autoimmune and/or chronic inflammatory diseases and manipulation of these pathways is an important emerging area of therapeutics. We report here that the immunosuppressant drug CTLA4‐Ig inhibits the effector phase of allergic airway inflammation through a CD28‐independent, nitric oxide synthase (NOS)‐dependent mechanism. Using mice deficient in both B‐ and T‐lymphocyte attenuator (BTLA) and CD28, we demonstrate that simultaneous deficiency of an inhibitory receptor can rescue the in vivo but not the in vitro CD28‐deficient phenotype. Furthermore, we demonstrate that inflammation in CD28/BTLA‐double‐deficient mice is suppressed by CTLA4‐Ig. This suppression is reversed by treatment with the NOS inhibitor, N6‐methyl‐L ‐arginine acetate (L‐NMMA). In addition, CTLA4‐Ig is ineffective at inhibiting inflammation in NOS2‐deficient mice when given at the effector phase. Thus, CD28 and BTLA coordinately regulate the in vivo response to inhaled allergen, and CTLA4‐Ig binding to B7‐proteins inhibits the effector phase of inflammation by a CD28‐independent, NOS‐dependent mechanism.
Keywords:Allergic lung inflammation  Costimulation  CTLA4‐Ig  T‐cell activation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号