首页 | 本学科首页   官方微博 | 高级检索  
检索        


High fat intake lowers hepatic fatty acid synthesis and raises fatty acid oxidation in aerobic muscle in Shetland ponies.
Authors:S N Geelen  C Blázquez  M J Geelen  M M Sloet van Oldruitenborgh-Oosterbaan  A C Beynen
Institution:Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands. suzannegeelen@hotmail.com
Abstract:The metabolic effects of feeding soyabean oil instead of an isoenergetic amount of maize starch plus glucose were studied in ponies. Twelve adult Shetland ponies were given a control diet (15 g fat/kg DM) or a high-fat diet (118 g fat/kg DM) according to a parallel design. The diets were fed for 45 d. Plasma triacylglycerol (TAG) concentrations decreased by 55 % following fat supplementation. Fat feeding also reduced glycogen concentrations significantly by up to 65 % in masseter, gluteus and semitendinosus muscles (P < 0.05 and P < 0.01 and P < 0.01 respectively). The high-fat diet significantly increased the TAG content of semitendinosus muscle by 80 % (P < 0.05). Hepatic acetyl-CoA carboxylase and fatty acid synthase activities were 53 % (P < 0.01) and 56 % (P < 0.01) lower respectively in the high-fat group, but diacylglycerol acyltransferase activity was unaffected. Although carnitine palmitoyltransferase-I (CPT-I) activity in liver mitochondria was not influenced, fat supplementation did render CPT-I less sensitive to inhibition by malonyl-CoA. There was no significant effect of diet on the activity of phosphofructokinase in the different muscles. The activity of citrate synthase was raised significantly (by 25 %; P < 0.05) in the masseter muscle of fat-fed ponies, as was CPT-I activity (by 46 %; P < 0.01). We conclude that fat feeding enhances both the transport of fatty acids through the mitochondrial inner membrane and the oxidative capacity of highly-aerobic muscles. The higher oxidative ability together with the depressed rate of de novo fatty acid synthesis in liver may contribute to the dietary fat-induced decrease in plasma TAG concentrations in equines.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号