首页 | 本学科首页   官方微博 | 高级检索  
检索        


Analysis of complex structural variants in the DMD gene in one family
Authors:Leonela Luce  Martín M Abelleyro  Micaela Carcione  Chiara Mazzanti  Liliana Rossetti  Pamela Radic  Irene Szijan  Sebastián Menazzi  Liliana Francipane  Julián Nevado  Pablo Lapunzina  Carlos De Brasi  Florencia Giliberto
Institution:1. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética, Laboratorio de Distrofinopatías, Universidad de Buenos Aires, Buenos Aires, Argentina;2. Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina;3. CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina;4. Hospital de Clínicas \"José de San Martín\", División de Genética, Universidad de Buenos Aires, Buenos Aires Argentina;5. Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain;6. Centro de Investigaciones Biomédicas en Red para Enfermedades Raras (CIBERER), Madrid, Spain;7. ITHACA-ERN (European Reference Network), La Paz University Hospital, Madrid, Spain;1. Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK;2. Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK;3. Metabolic Department Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, London, UK;4. NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK;1. Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany;2. Department of Neurology, University Hospital of Halle, Halle, Germany;3. Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany;4. Institute of Human Genetics, Universitätsklinikum Münster, Münster, Germany;5. Klinik für Neurologie, Diakonie-Krankenhaus, Schwäbisch Hall, Germany;6. Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany;7. Gemeinschaftspraxis für Neurologie und Psychiatrie, Leipzig, Germany;8. Department of Pediatrics, Technical University of Munich School of Medicine, Munich, Germany;9. Medical Genetics Centre, Bayerstr. 3-5, 80335 Munich, Germany;1. Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway;2. Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway;3. Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Veterinärstr. 13, D-80539 Munich, Germany;4. Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg C, Denmark;5. Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark;6. Department of Clinical Sciences, Swedish University of Agricultural Sciences, Ultunaalléen 5A, 756 51 Uppsala, Sweden;7. Anicura Albano Small Animal Hospital, Rinkebyvägen 21, 182 36 Danderyd, Sweden;8. Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0709, United States of America;9. Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway;10. Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway;1. Chair of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli” Monaldi Hospital, Naples, Italy;2. Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy;1. Institute of Molecular Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow G12 8QQ, United Kingdom;2. Undergraduate Medical School, University of Glasgow, Glasgow, United Kingdom;3. West of Scotland Regional Genetics Service, Laboratory Medicine Building, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, United Kingdom;4. Neurophysiology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom;5. Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, 1345, Govan Road, Glasgow G51 4TF, United Kingdom
Abstract:This work describes a family with Duchenne muscular dystrophy (DMD) with a rare case of a symptomatic pregnant woman. The main aim was to perform prenatal molecular diagnosis to provide genetic counseling. The secondary aim was to suggest the molecular mechanisms causing the complex structural variant (cxSV) identified. To accomplish this, we used a multi-technique algorithm including segregation analysis, Multiplex Ligation-dependent Probe Amplification, PCR, X-chromosome inactivation studies, microarrays, whole genome sequencing and bioinformatics. We identified a duplication of exons 38–43 in the DMD gene in all affected and obligate carrier members, proving that this was the DMD-causing mutation. We also observed a skewed X-chromosome inactivation in the symptomatic woman that explained her symptomatology. In addition, we identified a cxSV (duplication of exons 38–43 and deletion of exons 45–54) in the affected boy. The molecular characterization and bioinformatic analyses of the breakpoint junctions allowed us to identify Double Strand Breaks stimulator motifs and suggested the replication-dependent Fork Stalling and Template Switching as the most probable mechanisms leading to the duplication. In addition, the de novo deletion might have been the result of a germline inter-chromosome non-allelic recombination involving the Non-Homologous End Joining mechanism. In conclusion, the diagnostic strategy used allowed us to provide accurate molecular diagnosis and genetic counseling. In addition, the familial molecular diagnosis together with the in-depth characterization of the cxSV helped to determine the chronology of the molecular events, and propose and understand the molecular mechanisms involved in the generation of this complex rearrangement.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号