首页 | 本学科首页   官方微博 | 高级检索  
检索        


Spleen-derived macrophages are readily polarized into classically activated (M1) or alternatively activated (M2) states
Authors:Rylend Mulder  Andra BaneteSameh Basta
Institution:Department of Biomedical and Molecular Sciences, Queen''s University, Kingston, Ontario, Canada
Abstract:Bone marrow derived macrophages (BM-MΦ) that differentiate from precursor cells can be polarized into classically activated pro-inflammatory (M1) or alternatively activated (M2) states depending upon the cytokine microenvironment. We questioned whether tissue MΦ, such as spleen-derived MΦ (Sp-MΦ), have the ability to differentiate into M1 or M2 cells. We show in response to activation with IFN-gamma (IFN-γ) and lipopolysaccharide (LPS), that the Sp-MΦ readily acquired an M1 status indicated by up-regulation of iNOS mRNA, nitric oxide (NO) production, and the co-stimulatory molecule CD86. Conversely, Sp-MΦ exposed to IL-4 exhibited increased levels of mannose receptor (CD 206), arginase-1 (Arg)-1 mRNA expression, and significant urea production typical of M2 cells. At this stage of differentiation, the M2 Sp-MΦ were more efficient at phagocytosis of cell-associated antigens than their M1 counterparts. This polarization was not indefinite as the cells could revert back to their original state upon the removal of stimuli and exhibited flexibility to convert from M2 to M1. Remarkably, both M1 and M2 Sp-MΦ induced more CD4 expression on their cells surface after stimulation. We also demonstrate that adherent macrophages cultured for a short term in IL-4 enhances ARG-1 and YM-1 mRNA along with increasing urea producing capacity: traits indicative of an M2 phenotype. Moreover, in response to in vivo virus infection, the adherent macrophages obtained from spleens rapidly express iNOS. These results provide new evidence for the polarization capabilities of Sp-MΦ when exposed to pro-inflammatory or anti-inflammatory cytokines.
Keywords:Macrophages  LCMV  Spleen  Phagocytosis  CD4
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号