Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis |
| |
Authors: | Faivre V Lukaszewicz A-C Alves A Charron D Payen D Haziot A |
| |
Affiliation: | INSERM U662, Paris, France. |
| |
Abstract: | Summary Sepsis-induced immune depression is characterized by infection susceptibility and monocyte early deactivation. Because monocytes are precursors for dendritic cells (DC), alterations in their differentiation into DC may contribute to defective immune responses in septic patients. We therefore investigated the ability of monocytes to differentiate into functional DC in vitro in patients undergoing surgery for peritonitis. Monocytes from 20 patients collected immediately after surgery (D0), at week 1 and at weeks 3-4 and from 11 control donors were differentiated into immature DC. We determined the phenotype of monocytes and derived DC, and analysed the ability of DC to respond to microbial products and to elicit T cell responses in a mixed leucocyte reaction (MLR). We show that, although monocytes from septic patients were deactivated with decreased responses to lipopolysaccharide (LPS) and peptidoglycan and low human leucocyte antigen D-related (HLA-DR) expression, they expressed the co-stimulatory molecule CD80, CD40 and CCR7. Monocytes collected from patients at D0 and week 1 differentiated faster into DC with early loss of CD14 expression. Expression of HLA-DR increased dramatically in culture to reach control levels, as did responses of DC to LPS and peptidoglycan. However, although patient and control immature DC had similar abilities to induce T cell proliferation in MLR, maturation of DC derived from patients did not increase T cell responses. These results show that circulating monocytes from septic patients express markers of activation and/or differentiation despite functional deactivation, and differentiate rapidly into phenotypically normal DC. These DC fail, however, to increase their T cell activation abilities upon maturation. |
| |
Keywords: | dendritic cells differentiation innate immunity monocytes sepsis |
本文献已被 PubMed 等数据库收录! |
|