首页 | 本学科首页   官方微博 | 高级检索  
检索        


Radial glia in the human fetal cerebrum: A combined golgi, immunofluorescent and electron microscopic study
Authors:Ben H Choi  Lowell W Lapham
Institution:Department of Pathology, Neuropathology Division, University of Rochester Medical Center, Rochester, N.Y. ,U.S.A.
Abstract:Golgi techniques, immunofluorescence for glial fibrillary acidic (GFA) protein, and electron microscopy (EM) were used to determine the nature of radial glia in the cerebrum of human fetuses ranging from 7 to 20 weeks of ovulation age. Successful Golgi impregnation of radial fibers was achieved in fetuses 12 weeks of age and older. These fibers spanned the entire thickness of the hemisphere. At the pial surface many of them branched and terminated in pyramidal end feet expansions. Indirect immunofluorescent preparations utilizing antiserum to GFA protein, a protein specific for astrocytes, demonstrated numerous radially oriented nearly parallel fluorescent fibres between the ventricular zone and pia mater. GFA protein-positive fibers were demonstrated in all fetal specimens examined with this technique (10 weeks of age and older). Along the outer border of the marginal zone they formed a horizontal GFA protein-containing subpial membrane. By EM there were numerous linear electron lucent astrocytic processes containing 8-9 nm filaments and occasional glycogen granules at all levels of the cerebrum. They were interspersed among smaller and darker neuronal processes containing 20-25 nm neurotubules, and were demonstrable at all fetal ages between 7 and 18 weeks. They formed pericapillary investments and subpial terminal expansions closely abutting basal lamina of pia mater in every specimen examined. On the basis of these combined analyses, we conclude that radial glial fibers in early human fetal cerebrum represent processes of immature astrocytes. Although subsequently undergoing further maturation, radial glia already possess fundamental immunocytochemical and morphological characteristics indicative of astrocytic differentiation. A significant implication of our findings is that the development of astrocytes in the human fetal brain occurs much earlier than formerly believed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号