首页 | 本学科首页   官方微博 | 高级检索  
     


GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging
Authors:Refaat E. Gabr  Getaneh B. Tefera  William J. Allen  Amol S. Pednekar  Ponnada A. Narayana
Affiliation:1.Departments of Diagnostic and Interventional Imaging,University of Texas Health Science Center at Houston (UTHealth),Houston,USA;2.Texas Advanced Computing Center,University of Texas at Austin,Austin,USA;3.Philips Healthcare,Cleveland,USA
Abstract:

Purpose

We present a platform, GRAphical Pipeline Environment (GRAPE), to facilitate the development of patient-adaptive magnetic resonance imaging (MRI) protocols.

Methods

GRAPE is an open-source project implemented in the Qt C++ framework to enable graphical creation, execution, and debugging of real-time image analysis algorithms integrated with the MRI scanner. The platform provides the tools and infrastructure to design new algorithms, and build and execute an array of image analysis routines, and provides a mechanism to include existing analysis libraries, all within a graphical environment. The application of GRAPE is demonstrated in multiple MRI applications, and the software is described in detail for both the user and the developer.

Results

GRAPE was successfully used to implement and execute three applications in MRI of the brain, performed on a 3.0-T MRI scanner: (i) a multi-parametric pipeline for segmenting the brain tissue and detecting lesions in multiple sclerosis (MS), (ii) patient-specific optimization of the 3D fluid-attenuated inversion recovery MRI scan parameters to enhance the contrast of brain lesions in MS, and (iii) an algebraic image method for combining two MR images for improved lesion contrast.

Conclusions

GRAPE allows graphical development and execution of image analysis algorithms for inline, real-time, and adaptive MRI applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号