首页 | 本学科首页   官方微博 | 高级检索  
     


A computationally efficient method for tracking reference position displacements for motion compensation in magnetic resonance imaging.
Authors:T K Foo  K F King
Affiliation:Applied Science Laboratory, GE Medical Systems, Milwaukee, Wisconsin,USA. thomas.foo@med.ge.com
Abstract:A fast and computationally efficient method for detecting and tracking the displacement of a reference structure within the body using MR imaging is described. This method is used to determine the position of the diaphragm in order to synchronize the data acquisition to the same relative position of the abdominal and thoracic organs, thereby minimizing or eliminating respiratory motion artifacts. The method described uses the time domain linear phase shift of a reference structure to determine its spatial positional displacement as a function of the respiratory cycle. The signal from a two-dimensional rectangular excitation column is first Fourier-transformed to the image domain, apodized, and then transformed back to the time domain. The relative displacement of a target edge in the image domain is determined from an autocorrelation of the resulting time domain information. This technique was found to require between three and eight times less computation than either cross-correlation or least-squares analysis, depending on the navigator parameters. Magn Reson Med 42:548-553, 1999.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号