首页 | 本学科首页   官方微博 | 高级检索  
检索        


ATP release and hydrolysis contribute to rat pial arteriolar dilatation elicited by neuronal activation
Authors:Xu Hao-Liang  Pelligrino Dale A
Institution:University of Illinois at Chicago, Neuroanesthesia Research Laboratory, 835 South Wolcott Avenue, Room E-714E, Chicago, IL 60612, USA. hlxu@uic.edu
Abstract:Owing to their intimate anatomical relationship with cerebral arterioles, astrocytes have been postulated as signal transducers, transferring information from activated neurones to the cerebral microcirculation. These forwarded signals may involve the release of vasoactive factors from the end-feet of astrocytes. This mechanism is termed 'neurovascular coupling' and its anatomical components (i.e. neurone, astrocyte and vascular cells) are termed the 'neurovascular unit'. The process of neurovascular coupling often involves upstream dilatation. This is necessary during periods of increased metabolic demand, in order to permit more blood to reach dilated downstream vessels, thereby improving nutrient supply to the activated neurones. Without it, that downstream dilatation might be ineffective, placing neurones at risk, especially during episodes of intense neuronal activity, such as seizure. In the brain, pial arterioles represent important 'upstream' vascular segments. The pial arterioles overlie a thick layer of astrocytic processes, termed the glia limitans. This essentially isolates pial arterioles, anatomically, from the neurones below. Vasodilating signals that originate in the neurones therefore reach the pial arterioles via indirect pathways, primarily involving astrocytes and the glia limitans. Here we discuss a process whereby purinergic mechanisms play a key and neuronal activity-dependent role in astrocyte to astrocyte communication, as well as in glia limitans to pial arteriolar signals leading to vasodilatation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号