首页 | 本学科首页   官方微博 | 高级检索  
     


Facile synthesis of g-C3N4 quantum dots/graphene hydrogel nanocomposites for high-performance supercapacitor
Authors:Di Liu  Tran Van Tam  Won Mook Choi
Affiliation:School of Chemical Engineering, University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan 44610 Republic of Korea,
Abstract:This work demonstrates a facile one-pot method for preparing graphitic carbon nitride (g-C3N4) quantum dots/graphene hydrogel (CNQ/GH) nanocomposites using a hydrothermal process, in which graphene sheets of a graphene hydrogel (GH) are decorated with g-C3N4 quantum dots (CNQDs) and have a 3D hierarchical and interconnected structure through a typical self-assembly process. The obtained CNQ/GH nanocomposite demonstrates improved electrochemical performances of a supercapacitor with a specific capacitance of 243.2 F g−1 at a current density of 0.2 A g−1. In addition, the fabricated symmetric supercapacitor (SSC) using CNQ/GH electrodes exhibits a high energy density of 22.5 W h kg−1 at a power density of 250 W kg−1 and a superior cycling stability with a capacitance retention of 89.5% after 15 000 cycles. The observed improvements in the electrochemical performance of CNQ/GH electrodes are attributed to the large surface area with abundant mesopores and various C–N bonds in CNQDs, which promote efficient ion diffusion of electrolyte and electron transfer and provide more active sites for faradaic reactions. These obtained results demonstrate a facile and efficient route to develop potential electrode materials for high-performance energy storage device applications.

This work demonstrates a facile one-pot synthesis of graphitic carbon nitride (g-C3N4) quantum dots/graphene hydrogel (CNQ/GH) nanocomposites using a hydrothermal process, which shows excellent electrochemical performances for supercapacitors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号