首页 | 本学科首页   官方微博 | 高级检索  
检索        


Oxygenator exhaust capnography for prediction of arterial carbon dioxide tension during hypothermic cardiopulmonary bypass
Authors:Baraka Anis  El-Khatib Mohamad  Muallem Eva  Jamal Salim  Haroun-Bizri Sania  Aouad Marie
Institution:Department of Anesthesiology, School of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon. abaraka@aub.edu.lb
Abstract:Continuous monitoring and control of arterial carbon dioxide tension (P(a)CO2) during cardiopulmonary bypass (CPB) is essential. A reliable, accurate, and inexpensive system is not currently available. This study was undertaken to assess whether the continuous monitoring of oxygenator exhaust carbon dioxide tension (PexCO2) can be used to reflect P(a)CO2 during CPB. A total of 33 patients undergoing CPB for cardiac surgery were included in the study. During normothermia (37 degrees C) and stable hypothermia (31 degrees C), the values of PexCO2 from the oxygenator exhaust outlet were monitored and compared simultaneously with the P(a)CO2 values. Regression and agreement analysis were performed between PexCO2 and temperature corrected-P(a)CO2 and temperature uncorrected-P(a)CO2. At normothermia, a significant correlation was obtained between PexCO2 and P(a)CO2 (r = 0.79; p < 0.05); there was also a strong agreement between PexCO2 and P(a)CO2 with a gradient of 3.4 +/- 1.9 mmHg. During stable hypothermia, a significant correlation was obtained between PexCO2 and the temperature corrected-P(a)CO2 (r = 0.78; p < 0.05); also, there was a strong agreement between PexCO2 and temperature corrected-P(a)CO2 with a gradient of 2.8 +/- 2.0 mmHg. During stable hypothermia, a significant correlation was obtained between PexCO2 and the temperature uncorrected-P(a)CO2 (r = 0.61; p < 0.05); however, there was a poor agreement between PexCO2 and the temperature uncorrected-P(a)CO2 with a gradient of 13.2 +/- 3.8 mmHg. Oxygenator exhaust capnography could be used as a mean for continuously monitoring P(a)CO2 during normothermic phase of cardiopulmonary bypass as well as the temperature-corrected P(a)CO2 during the stable hypothermic phase of CPB.
Keywords:exhaust capnography  hypothermia  cardiopulmonary bypass
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号