首页 | 本学科首页   官方微博 | 高级检索  
     


Non-zero-sum microbiome immune system interactions
Authors:Timur Tuganbaev  Kenya Honda
Affiliation:Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
Abstract:Fundamental asymmetries between the host and its microbiome in enzymatic activities and nutrient storage capabilities have promoted mutualistic adaptations on both sides. As a result, the enteric immune system has evolved so as not to cause a zero-sum sterilization of non-self, but rather achieve a non-zero-sum self-reinforcing cooperation with its evolutionary partner the microbiome. In this review, we attempt to integrate the accumulated knowledge of immune—microbiome interactions into an evolutionary framework and trace the pattern of positive immune—microbiome feedback loops across epithelial, enteric nervous system, innate, and adaptive immune circuits. Indeed, the immune system requires commensal signals for its development and function, and reciprocally protects the microbiome from nutrient shortage and pathogen outgrowth. In turn, a healthy microbiome is the result of immune system curatorship as well as microbial ecology. The paradigms of host–microbiome asymmetry and the cooperative nature of their interactions identified in the gut are applicable across all tissues influenced by microbial activities. Incorporation of immune system influences into models of microbiome ecology will be a step forward toward defining what constitutes a healthy human microbiome and guide discoveries of novel host–microbiome mutualistic adaptations that may be harnessed for the promotion of human health.
Keywords:enteric nervous system  gut-brain axis  immune system  microbiome  mutualism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号