首页 | 本学科首页   官方微博 | 高级检索  
检索        


Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1
Authors:Oumata Nassima  Bettayeb Karima  Ferandin Yoan  Demange Luc  Lopez-Giral Angela  Goddard Marie-Lorène  Myrianthopoulos Vassilios  Mikros Emmanuel  Flajolet Marc  Greengard Paul  Meijer Laurent  Galons Hervé
Institution:Laboratoire de Chimie Organique 2, INSERM U 648, Universite Paris-Descartes, 4 avenue de l'Observatoire, 75270 Paris cedex 06, France.
Abstract:Cyclin-dependent kinases (CDKs) and casein kinases 1 (CK1) are involved in the two key molecular features of Alzheimer's disease, production of amyloid-beta peptides (extracellular plaques) and hyper-phosphorylation of Tau (intracellular neurofibrillary tangles). A series of 2,6,9-trisubstituted purines, structurally related to the CDK inhibitor roscovitine, have been synthesized. They mainly differ by the substituent on the C-6 position. These compounds were screened for kinase inhibitory activities and antiproliferative effects. Several biaryl derivatives displayed potent inhibition of both CDKs and CK1. In particular, derivative 13a was a potent inhibitor of CDK1/cyclin B (IC 50: 220 nM), CDK5/p25 (IC 50: 80 nM), and CK1 (IC 50: 14 nM). Modeling of these molecules into the ATP-binding pocket of CK1delta provided a rationale for the increased selectivity toward this kinase. 13a was able to prevent the CK1-dependent production of amyloid-beta in a cell model. CDK/CK1 dual-specificity inhibitors may have important applications in Alzheimer's disease and cancers.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号