首页 | 本学科首页   官方微博 | 高级检索  
检索        


Optimising plasticity: environmental and training associated factors in transplant-mediated brain repair
Authors:Döbrössy Màtè Daniel  Dunnett Stephen B
Institution:The Brain Repair Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK.
Abstract:With progressively ageing populations, degeneration of nerve cells of the brain, due to accident or disease, represents one of the major problems for health and welfare in the developed world. The molecular environment in the adult brain promotes stability limiting its ability to regenerate or to repair itself following injury. Cell transplantation aims to repair the nervous system by introducing new cells that can replace the function of the compromised or lost cells. Alternatives to primary embryonic tissue are actively being sought but this is at present the only source that has been shown reliably to survive grafting into the adult brain and spinal cord, connect with the host nervous system, and influence behaviour. Based on animal studies, several clinical trials have now shown that embryonic tissue grafts can partially alleviate symptoms in Parkinson's disease, and related strategies are under evaluation for Huntington's disease, spinal cord injury, stroke and other CNS disorders. The adult brain is at its most plastic in the period following injury, offering a window of opportunity for therapeutic intervention. Enriched environment, behavioural experience and grafting can each separately influence neuronal plasticity and recovery of function after brain damage, but the extent to which these factors interact is at present unknown. To improve the outcome following brain damage, transplantation must make use of the endogenous potential for plasticity of both the host and the graft and optimise the external circumstances associated with graft-mediated recovery. Our understanding of mechanisms of brain plasticity subsequent to brain damage needs to be associated with what we know about enhancing intrinsic recovery processes in order to improve neurobiological and surgical strategies for repair at the clinical level. With the proof of principle beginning to emerge from clinical trials, a rich area for innovative research with profound therapeutic application, even broader than the specific context of transplantation, is now opening for investigation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号