首页 | 本学科首页   官方微博 | 高级检索  
检索        


The antihypertensive effect of arginine
Authors:Vasdev Sudesh  Gill Vicki
Institution:Discipline of Medicine, Faculty of Medicine, Health Sciences Centre, Memorial University, St John's, Newfoundland.
Abstract:Hypertension is a leading cause of morbidity and mortality worldwide. Individuals with hypertension are at increased risk of stroke, heart disease and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Reducing dietary salt is effective in lowering blood pressure in salt-sensitive individuals. Insulin resistance and altered glucose metabolism are common features of hypertension in humans and animal models, with or without salt sensitivity. Altered glucose metabolism leads to increased formation of advanced glycation end products. Insulin resistance is also linked to oxidative stress, and alterations in the nitric oxide pathway and renin angiotensin system. A diet rich in protein containing the semiessential amino acid, arginine, and arginine treatment, lowers blood pressure in humans and in animal models. This may be due to the ability of arginine to improve insulin resistance, decrease advanced glycation end products formation, increase nitric oxide, and decrease levels of angiotensin II and oxidative stress, with improved endothelial cell function and decreased peripheral vascular resistance. The Dietary Approaches to Stop Hypertension (DASH) study demonstrated that the DASH diet, rich in vegetables, fruits and low-fat dairy products; low in fat; and including whole grains, poultry, fish and nuts, lowered blood pressures even more than a typical North American diet with similar reduced sodium content. The DASH diet is rich in protein; the blood pressure-lowering effect of the DASH diet may be due to its higher arginine-containing protein, higher antioxidants and low salt content.
Keywords:Advanced glycation end products  Arginine  Hypertension  Insulin resistance  Nitric oxide  Oxidative stress  Renin angiotensin system
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号