首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans
Authors:Lee M Romer  rew T Lovering  Hans C Haverkamp  David F Pegelow  Jerome A Dempsey
Institution:John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, Medical Sciences Center, 1300 University Avenue, University of Wisconsin, Madison, WI 53706, USA;Centre for Sports Medicine and Human Performance, Brunel University, Middlesex UB8 3PH, UK;University of Vermont, Department of Medicine, 149 Beaumont Avenue, HSFR 226, Burlington, VT 05405, USA
Abstract:The work of breathing required during maximal exercise compromises blood flow to limb locomotor muscles and reduces exercise performance. We asked if force output of the inspiratory muscles affected exercise-induced peripheral fatigue of locomotor muscles. Eight male cyclists exercised at ≥ 90% peak O2 uptake to exhaustion (CTRL). On a separate occasion, subjects exercised for the same duration and power output as CTRL (13.2 ± 0.9 min, 292 W), but force output of the inspiratory muscles was reduced (−56% versus CTRL) using a proportional assist ventilator (PAV). Subjects also exercised to exhaustion (7.9 ± 0.6 min, 292 W) while force output of the inspiratory muscles was increased (+80% versus CTRL) via inspiratory resistive loads (IRLs), and again for the same duration and power output with breathing unimpeded (IRL-CTRL). Quadriceps twitch force ( Q tw), in response to supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz), was assessed pre- and at 2.5 through to 70 min postexercise. Immediately after CTRL exercise, Q tw was reduced −28 ± 5% below pre-exercise baseline and this reduction was attenuated following PAV exercise (−20 ± 5%; P < 0.05). Conversely, increasing the force output of the inspiratory muscles (IRL) exacerbated exercise-induced quadriceps muscle fatigue ( Q tw=−12 ± 8% IRL-CTRL versus −20 ± 7% IRL; P < 0.05). Repeat studies between days showed that the effects of exercise per se , and of superimposed inspiratory muscle loading on quadriceps fatigue were highly reproducible. In conclusion, peripheral fatigue of locomotor muscles resulting from high-intensity sustained exercise is, in part, due to the accompanying high levels of respiratory muscle work.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号