首页 | 本学科首页   官方微博 | 高级检索  
     

拓扑约束结合匈牙利算法在高密度神经干细胞追踪中的研究
引用本文:汤春明,董莎莎,宁燕博,崔颖. 拓扑约束结合匈牙利算法在高密度神经干细胞追踪中的研究[J]. 生物医学工程学杂志, 2012, 0(4): 597-603
作者姓名:汤春明  董莎莎  宁燕博  崔颖
作者单位:哈尔滨工程大学信息与通信工程学院
基金项目:国家自然科学基金资助项目(60875020)
摘    要:神经干细胞(NSCs)的运动分析是细胞学和生物学研究中重要的组成部分之一,而对大量NSCs同时进行追踪是细胞运动研究的主要难点。为了进一步提高高密度NSCs追踪算法的准确性,本文提出了一种新的基于分割、结合拓扑约束和数据关联的细胞追踪方法。首先针对实验所用的两组细胞图像序列的特点,分别采用了不同的分割方法。然后利用拓扑约束完成相邻两帧中所有细胞的数据关联并建立系数矩阵,最后对该系数矩阵利用匈牙利算法实现细胞的最优匹配,以此模式从序列的前两帧到最后一帧完成细胞追踪。实验结果表明,本文算法与单独利用拓扑约束进行细胞追踪的方法相比,有更好的追踪效果,准确性更高,序列I和序列Ⅱ的最终追踪准确率分别提高了10.17%和4%。

关 键 词:神经干细胞  细胞追踪  拓扑约束  匈牙利算法  数据关联

Tracking of Neural Stem Cells in High Density Image Sequence Based on Topological Constraint Combined with Hungarian Algorithm
Tang Chunming Dong Shasha Ning Yanbo Cui Ying. Tracking of Neural Stem Cells in High Density Image Sequence Based on Topological Constraint Combined with Hungarian Algorithm[J]. Journal of biomedical engineering, 2012, 0(4): 597-603
Authors:Tang Chunming Dong Shasha Ning Yanbo Cui Ying
Affiliation:Tang Chunming Dong Shasha Ning Yanbo Cui Ying (Information and Communication Engineering College,Harbin Engineering University,Harbin 150001,China)
Abstract:Analysis of neural stem cells’ movements is one of the important parts in the fields of cellular and biological research.The main difficulty existing in cells’ movement study is whether the cells tracking system can simultaneously track and analyze thousands of neural stem cells(NSCs) automatically.We present a novel cells’ tracking algorithm which is based on segmentation and data association in this paper,aiming to improve the tracking accuracy further in high density NSCs’ image.Firstly,we adopted different methods of segmentation base on the characteristics of the two cell image sequences in our experiment.Then we formed a data association and constituted a coefficient matrix by all cells between two adjacent frames according to topological constraints.Finally we applied The Hungarian algorithm to implement inter-cells matching optimally.Cells’ tracking can be achieved according to this model from the second frame to the last one in a sequence.Experimental results showed that this approaching method has higher accuracy compared with that using the topological constraints tracking alone.The final tracking accuracies of average of sequence I and sequenceⅡ have been improved 10.17% and 4%,respectively.
Keywords:Neural stem cells(NSCs)  Cell’s tracking  Topological constraint  Hungarian algorithm  Data association
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号