首页 | 本学科首页   官方微博 | 高级检索  
     


Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF and growth factors.
Authors:I A Ferguson  J B Schweitzer  P F Bartlett  E M Johnson
Affiliation:Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110.
Abstract:Radiolabel tracer techniques were used to follow the distribution of nerve growth factor (NGF) and other neuromodulatory factors after intraventricular injection. Autoradiography showed that shortly after intraventricular injection of radio-iodinated NGF (125I-NGF), substantial amounts of radioactivity had penetrated the ventricular wall surfaces; this binding was transient and nonspecific. The 125I-NGF was progressively cleared from the central nervous system (CNS), presumably via the flow of cerebrospinal fluid (CSF) into the blood. A relatively small proportion of the injected 125I-NGF was taken up by NGF receptor-positive neurons in the CNS. Retrograde accumulation of radiolabel was observed within the basal forebrain cholinergic neurons at 5 hours after intraventricular injection. Labeling intensity was maximal at 18 hours and much reduced by 30 hours. This labeling was blocked by co-injection of an excess of unlabeled NGF. Specific and saturable retrograde labeling was also observed within other NGF receptor-bearing neurons, including the prepositus hypoglossal nucleus and the raphe obscurus nucleus. When epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-beta 1), platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, leukemia inhibitory factor (LIF), insulin-like growth factor-I (IGF-I), or IGF-II was radiolabeled and injected intraventricularly, specific labeling of neurons was observed for 125I-IGF-II and 125I-LIF within separate subpopulations of the dorsal and medial raphe. No retrograde accumulation within neurons was observed for EGF, TGF-beta 1, PDGF-AA, PDGF-BB, or IGF-I. This study describes an in vivo method for identifying putative neuromodulatory factors and their responsive neurons.
Keywords:axonal transport  neurotrophic factors  growth factor receptors  cerebrospinal fluid  fibroblast growth factor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号