首页 | 本学科首页   官方微博 | 高级检索  
检索        

人体腓骨体部骨组织显微硬度的分布特征
作者姓名:王建朝  刘国彬  张晓娟  李升  殷兵  胡祖圣  吴卫卫  刘雅克  张英泽
作者单位:1河北医科大学第三医院骨科 河北省骨科生物力学重点实验室 河北省骨科研究所,石家庄050051;2南通大学附属医院骨科,江苏省南通市22600
基金项目:国家自然科学基金(81572125、81501934)
摘    要:目的 探讨人体腓骨体部骨组织显微硬度分布特征。方法 纳入3具新鲜冰冻成人尸体标本(62岁男性、58岁男性、45岁女性),均排除骨骼慢性疾病病史。取右侧腓骨体部,垂直于腓骨体部长轴将其切割为6等份,再使用高精度低速锯于每段标本中部取骨组织制成3 mm厚的骨骼标本,并将每个标本分为前侧、内侧、后侧、外侧4个区域。应用维氏硬度测量系统对每个区域进行5次有效显微硬度测量并取得硬度值,分析腓骨体部不同层面及同一层面的前侧、内侧、后侧、外侧4个区域的显微硬度分布特征,比较不同层面、不同区域的显微硬度差异。结果 3具腓骨体部标本共制备18个骨骼标本,选取72个区域共计测量了360个位点的有效硬度值。3具腓骨体部标本前侧、内侧、后侧、外侧区域总体硬度值分别为(46.81±4.51)HV、(49.69±4.05)HV、(51.19±4.19)HV和(50.44±4.10)HV,其中前侧皮质硬度最低,后侧皮质硬度最高,不同区域总体显微硬度比较差异有统计学意义(F=18.590, P<0.01);腓骨体部1~6层面总体显微硬度分别为(48.63±4.88)HV、(49.66±4.19)HV、(49.50±4.67)HV、(51.07±4.08)HV、(49.96±4.24)HV、(48.39±4.63)HV,其中腓骨体部第4层面硬度最高,第6层面硬度最低,不同层面间总体显微硬度比较差异有统计学意义(F=2.830, P<0.05)。同一区域不同层面间显微硬度比较差异均无统计学意义(P值均>0.05)。同一层面内,1~4层面不同区域间显微硬度比较差异均有统计学意义(P值均<0.05),而第5、6层面不同区域间显微硬度比较差异均无统计学意义(P值均>0.05)。结论 腓骨体部不同层面和不同区域骨组织显微硬度分布存在差异。了解不同区域、不同层面间骨显微硬度差异,可帮助骨科医生在自体腓骨移植中,正确选择腓骨植入时放置的方向,减少移植物疲劳骨折的发生,还可以为制造更高精度的3D打印仿生骨提供数据支持。

关 键 词:腓骨  皮质骨  显微硬度  压痕技术  生物力学  
收稿时间:2019-02-01

Microhardness distribution of the fibula diaphysis in human skeleton
Authors:Wang Jiangzhao  Liu Guobin  Zhang Xiaojuan  Li Sheng  Yin Bing  Hu Zusheng  Wu Weiwei  Liu Yake  Zhang Yingze
Institution:1.Department of Orthopedic Surgery, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang 050051, China;2.Department of Orthopedics, the Affiliated Hospital of Nantong University, Nantong 226001, China
Abstract:Objective To explore the distribution characteristics of bone tissue microhardness in fibula diaphysis.Methods Three fresh right fibulae were obtained from 3 cadaver donors (male, 62 years old; female, 45 years old; male, 58 years old, all without previous chronic medical history). Each of the fibula diaphysis was divided into six parts, bone specimens with a thickness of 3mm were taken from the middle of each part by using a high-precision low-speed diamond saw. Each specimen was divided into four regions to measure the bone tissue microhardness. Five effective indentations were performed in each region to obtain microhardness values with the Vickers methord. The microhardness distribution characteristics of different parts and regions in each part were analyzed. The differences in bone tissue microhardness of different parts and regions were compared.Results A total of 18 bone specimens were obtained in this study. Three hundred and sixty effective indentation tests were performed in 72 regions and the microhardness values were obtained. The mean microhardness of the anterior, medial, posterior and lateral cortex of the 3 fibulae diaphysis were (46.81±4.51) HV, (49.69±4.05) HV, (51.19±4.19) HV and (50.44±4.10) HV, respectively. The microhardness of the anterior cortex was the lowest, and that of the posterior cortex was the highest; the differences among the different regions were statistically significant (F=18.590, P<0.01). The mean microhardness of the 6 parts of the fibula diaphysis was (48.63±4.88) HV, (49.66±4.19) HV, (49.50±4.67) HV, (51.07±4.08) HV, (49.96±4.24) HV and (48.39±4.63) HV, respectively. The microhardness of part 4 of the fibula diaphysis was the highest and the microhardness of part 6 was the lowest. There was no significant difference in microhardness between different layers in the same area (all P values>0.05). Within the same part, the difference of microhardness among different regions at the part 1-4 was statistically significant (all P values<0.05), while the difference of microhardness between different regions at the 5 and 6 layers was not statistically significant (all P values>0.05).Conclusions This study reports that the microhardness of bone tissue in different regions and different parts of the fibula diaphysis are difference. Understanding the difference in microhardness between different regions and parts is important. Because it is helpful for orthopedic surgeons to select the appropriate direction in the autologous fibula grafting, to reduce the occurrence of graft fatigue failure. The results can also provide data support for the manufacture of 3D printed bionic bone with higher precision.
Keywords:Fibula  Cortical bone  Microhardness  Indentation technique  Biomechanics  
本文献已被 万方数据 等数据库收录!
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号