首页 | 本学科首页   官方微博 | 高级检索  
     


Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells
Authors:Drysdale Alison J  Ryan Duncan  Pertwee Roger G  Platt Bettina
Affiliation:School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
Abstract:The phytocannabinoid cannabidiol (CBD) is at the forefront of therapeutic cannabinoid research due to its non-psychotropic properties. Research supports its use in a variety of disorders, yet the cellular mechanisms of its action remain unclear. In this study, the effect of CBD upon Ca2+ homeostasis in hippocampal cells was characterised. CBD (1 microM) elevated intracellular Ca2+ ([Ca2+]i) by approximately +45% of basal Ca2+ levels in both glia (77% responders) and neurones (51% responders). Responses to CBD were reduced in high excitability HEPES buffered solution (HBS), but not affected in low excitability/low Ca2+ HBS. CBD responses were also significantly reduced (by 50%) by the universal Ca2+ channel blocker cadmium (50 microM) and the L-type specific Ca2+ channel blocker nifedipine (20 microM). Interestingly, intracellular store depletion with thapsigargin (2 microM) had the most dramatic effect on CBD responses, leading on average to a full block of the response. Elevated CBD-induced [Ca2+]i responses (>+100%) were observed in the presence of the CB1 receptor antagonist, AM281 (1 microM), and the vanilloid receptor antagonist, capsazepine (CPZ, 1 microM). Overall, our data suggest that CBD modulates hippocampal [Ca2+]i homeostasis via intracellular Ca2+ stores and L-type VGCC-mediated Ca2+ entry, with tonic cannabinoid and vanilloid receptor signalling being negatively coupled to this pathway.
Keywords:Cannabidiol   Calcium   CB1   Vanilloid   Voltage-gated calcium channels   Intracellular calcium stores   IP3 receptor   Ryanodine receptor
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号