Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase |
| |
Authors: | Angus Peter Vaughan Rhys Xiong Shelly Yang Huiling Delaney William Gibbs Craig Brosgart Carol Colledge Danielle Edwards Rosalind Ayres Anna Bartholomeusz Angeline Locarnini Stephen |
| |
Affiliation: | Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia. peter.angus@armc.org.au |
| |
Abstract: | BACKGROUND & AIMS: Adefovir dipivoxil effectively inhibits both hepatitis B virus (HBV) replication and disease activity in patients with chronic hepatitis B. Resistance to treatment was not observed in 2 recent large placebo-controlled 48-week studies with this drug. The aim of this study was to characterize adefovir resistance in a patient who developed clinical and virologic evidence of breakthrough during a 96-week course of treatment. METHODS: HBV DNA was PCR amplified and sequenced. Phenotypic studies used patient-derived HBV as well as specific mutations created by site-directed mutagenesis of a HBV/baculovirus recombinant. RESULTS: Following the commencement of treatment with adefovir dipivoxil, the patient initially responded with a 2.4 log(10) decrease in serum HBV DNA and normalization of alanine aminotransaminase levels by week 16. During the second year of treatment, however, serum HBV DNA rose progressively, eventually returning to near-pretreatment levels. This increase in viral replication was associated with a marked increase in alanine aminotransferase and mild changes in bilirubin, albumin, and prothrombin time. Comparison of pretreatment and posttreatment HBV DNA by polymerase chain reaction sequencing identified a novel asparagine to threonine mutation at residue rt236 in domain D of the HBV polymerase. In vitro testing of a laboratory strain encoding the rtN236T mutation and testing of patient-derived virus confirmed that the rtN236T substitution caused a marked reduction in susceptibility to adefovir. CONCLUSIONS: The development of this novel mutation in the HBV polymerase confers resistance to adefovir dipivoxil. The patient responded to subsequent lamivudine therapy, achieving normalization of alanine aminotransferase and a significant decrease in serum HBV DNA. |
| |
Keywords: | HIV, human immunodeficiency virus PCR, polymerase chain reaction |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|