样本率与总体率比较时双侧累计概率的直接计算法 |
| |
作者姓名: | 陈国民 王洁贞 胡平 |
| |
作者单位: | 山东大学西校区公共卫生学院卫生统计教研室,250012 |
| |
摘 要: | 在对样本率与总体率进行比较时 ,如何利用二项分布原理直接求出双侧累计概率 ,国内统计学教材多未介绍。刘勖等参照四格表Fisher确切概率法计算双侧累计概率的“差数极端法”原则 ,提出了一种计算方法 :假设样本观察值为Xs,样本含量为n ,已知的总体率为π0 ,则双侧累计概率P =∑P(X) ,X满足条件 |X -nπ0 |≥ |Xs-nπ0 | 〔1〕。然而 ,四格表Fisher确切概率的取表原则有两种 ,即差数极端法和概率极端法 ,一般认为应以概率极端法为准〔2~ 4〕。所以 ,笔者认为 ,在进行样本率与总体率比较时 ,如果参照四格表确切概率…
|
本文献已被 CNKI 万方数据 等数据库收录! |
|