首页 | 本学科首页   官方微博 | 高级检索  
检索        


Regulation of the synthesis and metabolism of striatal dopamine after disruption of nerve conduction in the medial forebrain bundle.
Authors:J W Commissiong  C Slimovitch  and G Toffano
Institution:Department of Physiology, McGill University, Montreal, Quebec, Canada.
Abstract:1. After physical (knife-cut) or chemically-mediated (tetrodotoxin 300 nM, 1.5 microliters; 1.0 microliters min-1) interruption of nerve conduction in the nigrostriatal tract, there was a marked increase in the synthesis and metabolism of dopamine in the isolated dopaminergic nerve terminals of the striatum. The effect peaked at 4 h post-transection, at which time 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were increased by 300% and 700% respectively (DOPAC: 27 +/- 13 vs 80 +/- 17 nmol g-1; HVA: 6.66 +/- 3.57 vs 54 +/- 18 nmol g-1). The increases in dopamine content and metabolism are secondary to an increase in the rate of synthesis on the lesioned side, versus the intact, control side. 2. In both experimental situations, haloperidol (1.0 mg kg-1, i.p.) retained its known ability to induce a significant increase in DOPAC and HVA in the striatum, despite the interruption of nerve conduction in the nigrostriatal tract. 3. Six days after cutting the left nigrostriatal tract, dopamine in the left striatum was reduced to less than 5% of the control value, and DOPAC and HVA were not detectable. In the denervated, left striatum, the synthesis of dopamine (from injected L-DOPA), and its metabolism to DOPAC and HVA, occurred to the same degree as in the intact right side. In these DOPA-treated rats, haloperidol (1.0 mg kg-1, i.p.) caused a further increase in DOPAC and HVA in the intact striatum, but not in the denervated striatum.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号