首页 | 本学科首页   官方微博 | 高级检索  
     


Subcellular localization and complements of GABA(A) and GABA(C) receptors on bullfrog retinal bipolar cells
Authors:Du J L  Yang X L
Affiliation:Shanghai Institute of Physiology and Key Laboratory of Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.
Abstract:gamma-Aminobutyric acid (GABA) receptors on retinal bipolar cells (BCs) are highly relevant to spatial and temporal integration of visual signals in the outer and inner retina. In the present work, subcellular localization and complements of GABA(A) and GABA(C) receptors on BCs were investigated by whole cell recordings and local drug application via multi-barreled puff pipettes in the bullfrog retinal slice preparation. Four types of the BCs (types 1-4) were identified morphologically by injection of Lucifer yellow. According to the ramification levels of the axon terminals and the responses of these cells to glutamate (or kainate) applied at their dendrites, types 1 and 2 of BCs were supposed to be OFF type, whereas types 3 and 4 of BCs might be ON type. Bicuculline (BIC), a GABA(A) receptor antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist, were used to distinguish GABA receptor-mediated responses. In all BCs tested, not only the axon terminals but also the dendrites showed high GABA sensitivity mediated by both GABA(A) and GABA(C) receptors. Subcellular localization and complements of GABA(A) and GABA(C) receptors at the dendrites and axon terminals were highly related to the dichotomy of OFF and ON BCs. In the case of OFF BCs, GABA(A) receptors were rather evenly distributed at the dendrites and axon terminals, but GABA(C) receptors were predominantly expressed at the axon terminals. Moreover, the relative contribution of GABA(C) receptors to the axon terminals was prevalent over that of GABA(A) receptors, while the situation was reversed at the dendrites. In the case of ON BCs, GABA(A) and GABA(C) receptors both preferred to be expressed at the axon terminals; relative contributions of these two GABA receptor subtypes to both the sites were comparable, while GABA(C) receptors were much less expressed than GABA(A) receptors. GABA(A), but not GABA(C) receptors, were expressed clusteringly at axons of a population of BCs. In a minority of BCs, I4AA suppressed the GABA(C) responses at the dendrites, but not at the axon terminal, implying that the GABA(C) receptors at these two sites may be heterogeneous. Taken together, these results suggest that GABA(A) and GABA(C) receptors may play different roles in the outer and inner retina and the differential complements of the two receptors on OFF and ON BCs may be closely related to physiological functions of these cells.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号