首页 | 本学科首页   官方微博 | 高级检索  
检索        


Proteomic analysis on cellular response induced by nanoparticles reveals the nano-trafficking pathway through epithelium
Authors:Jian Zhang  Mengmeng Qin  Dan Yang  Wenbing Dai  Hua Zhang  Xueqing Wang  Bing He  Qiang Zhang
Abstract:The application of nanomedicines in oral drug delivery effectively promotes the drug absorption and transportation through enterocytes. Nevertheless, the absence of mechanism studies on efficacy and safety limits their final translation in humans. Although the vesicular trafficking has been verified as the general character for transport of nanomedicines, the deeper mechanism in molecular mechanism is still unclear. Moreover, the cellular transport of nanomedicines is a dynamic process involved by different organelles and components. However, most of existing studies just pay attention to the static location of nanomedicines, but neglect the dynamic biological effects on cells caused by them. Here, we prepared gold nanoparticles (AuNPs) as the model and cultured epithelial cell monolayer to explore the nano-bio interactions at the molecular level. The traditional pharmacological inhibition strategy and subcellular imaging technology elucidated the macropinocytosis/endosome/MVB/lysosome pathway during the transportation of AuNPs. Proteomics strategy based on mass spectrometry (MS) was utilized to identify and quantify proteins involved in the cellular transport of nanomedicines. Multiple proteins related to subcellular structure, signal transduction, energy transformation and metabolism regulation were demonstrated to be regulated by nanoparticle transport. These alterations of protein expression clarified the effects of intracellular proteins and verified the conventional findings. More importantly, it revealed a feedback mechanism of cells to the nano-trafficking. We believed that these new regulatory mechanisms provided new insights into the efficient transport of nanomedicines through epithelial barriers.
Keywords:Epithelium  Gold nanoparticles  Intracellular transport  Proteomics  Cellular response  
点击此处可从《中国药学》浏览原始摘要信息
点击此处可从《中国药学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号