首页 | 本学科首页   官方微博 | 高级检索  
     

基于LMCD的步态信号复杂度分析
引用本文:王沛存,赵俊昌,郑正中,王俊. 基于LMCD的步态信号复杂度分析[J]. 北京生物医学工程, 2013, 32(6): 571-574
作者姓名:王沛存  赵俊昌  郑正中  王俊
作者单位:南京邮电大学图像处理与图像通信江苏省重点实验室 南京 210003;南京邮电大学图像处理与图像通信江苏省重点实验室 南京 210003;南京邮电大学图像处理与图像通信江苏省重点实验室 南京 210003;南京邮电大学图像处理与图像通信江苏省重点实验室 南京 210003
基金项目:国家自然科学基金(61271082,61201029,61102094)、江苏省自然科学基金(BK2011759,BK2011565)资助
摘    要:目的步态信号的研究是现今生物医学研究的重点。对不同步态信号的分析,有助于进行临床诊断和医学研究。方法采用Lopez—Mancini—CalbetDivergence(LMCD)的复杂度分析方法,对老年人、年轻人和帕金森患者各10例的步态信号分别计算复杂度,并对实验数据进行方差分析。结果3种步态信号的复杂度差异显著性,年轻人的步态信号复杂度最大,老年人次之,帕金森患者的复杂度最小。结论基于LMCD的步态信号复杂度分析可以得出人的步态信号随机性的强弱。

关 键 词:Lopez-Mancini-Calbet Divergence  步态信号  复杂度

Complexity analysis of gait signal based on LMCD
WANG Peicun,ZHAO Junchang,ZHENG Zhengzhong,WANG Jun. Complexity analysis of gait signal based on LMCD[J]. Beijing Biomedical Engineering, 2013, 32(6): 571-574
Authors:WANG Peicun  ZHAO Junchang  ZHENG Zhengzhong  WANG Jun
Affiliation:Image processing and Image Communications Key Laboratory, Nanjing University of Posts and Telecommunication, Nanjing 210003
Abstract:Objective The gait signal is now the focus of biomedical research and the analysis of gait signal is helpful to clinical diagnosis and medical research. Methods The Lopez-Mancini-Calbet Divergence (LMCD) ,the method of complexity analysis is used to calculate ten cases of the complexity of the elderly, young people and patients with Parkinson' s gait signal, and then we detect the experimental data by variance detection. Results The differences among the complexity of the three groups of gait signals are significant. The gait signal complexity of the young people group is higher than that of the elderly people group, and that of the Parkinson' s patient group is the lowest. Conclusions The complexity analysis of gait signal based on LMCD can get the strength of the randomness of human gait signal.
Keywords:Lopez-Mancini-Calbet Divergence  gait signal  complexity
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号