首页 | 本学科首页   官方微博 | 高级检索  
检索        


Preclinical factors affecting the interindividual variability in the clearance of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid
Authors:Zhou Shufeng  Kestell Philip  Baguley Bruce C  Paxton James W
Institution:Division of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland, New Zealand. phazsf@nus.edu.sg
Abstract:Cancer chemotherapy is characterized by significant interindividual variations in systemic clearance, therapeutic response, and toxicity. These variations are due mainly to genetic factors, leading to alterations in drug metabolism and/or target proteins. The aim of this study was to determine, using a human liver bank (N=14), the interindividual variations in the expression and activity of liver enzymes that metabolize the investigational anticancer drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), i.e cytochrome P450 (CYP1A2) and uridine diphosphate glucuronosyltransferase (UGT1A9/2B7). In addition, interindividual variations in enzyme inhibition, hydrolysis of DMXAA acyl glucuronide (DMXAA-G) by plasma and hepatic microsomes, and the binding of DMXAA by plasma proteins also were examined. The results indicated that there was approximately one order of magnitude of interindividual variation in the expression of CYP1A2 and UGT2B7, activity of the enzymes toward DMXAA, and inhibition potency (IC(50)) by diclofenac, cyproheptadine, and alpha-naphthoflavone. The enzyme activities toward DMXAA and IC(50) values were closely correlated with enzyme expression. There was a smaller (2- to 3-fold) variation in the enzyme-catalyzed hydrolysis of DMXAA acyl glucuronide in human plasma and liver microsomes (N=6) and in the binding of DMXAA by plasma proteins in humans. In conclusion, the interindividual variability of DMXAA disposition observed in vitro might reflect the greater elimination variability (>one order of magnitude) in Phase I cancer patients. The variability in DMXAA clearance in these cancer patients would be due mainly to differences in its metabolism and its metabolic inhibition by co-administered drugs. To a lesser extent, variability in the clearance of DMXAA could be due to the hydrolysis of its acyl glucuronide and/or its binding to plasma proteins. Further study is needed to examine the genotype-phenotype relationship, and the result, together with therapeutic drug monitoring may provide a useful strategy for optimizing DMXAA treatment.
Keywords:ANF  α-naphthoflavone  CYP  cytochrome P450  DMXAA  5  6-dimethylxanthenone-4-acetic acid  DMXAA-G  DMXAA acyl glucuronide  ic50" target="_blank">ic50  concentration inhibiting 50% of the reaction  k  the first order degradation constant  Km  Michaelis-Menten constant  6-OH-MXAA  6-hydroxymethyl-5-methylxanthenone-4-acetic acid  TNF-α  tumor necrosis factor-α  Vmax  the maximum metabolic velocity  UGT  uridine diphosphate glucuronosyltransferase
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号