首页 | 本学科首页   官方微博 | 高级检索  
     


Finite Element Analysis of Extrinsic Parameters on the Onset of Tensile Strength in Powders
Affiliation:1. Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India;2. Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom;1. Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Argentina;2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina;3. Facultad de Ciencias Químicas - Universidad Nacional de Córdoba, Argentina;4. Laboratorio de Biotecnología - Facultad de Ciencias Químicas - Universidad Católica de Córdoba, Argentina;1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China;2. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China;3. College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China;1. Faculty of Chemistry, Kharazmi University, Tehran, Iran;2. Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran;3. Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran;4. Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran;1. Department of Chemistry, Centre College, Danville, KY 40422, United States;2. Department of Chemistry and Biochemistry, DePauw University, Greencastle, IN 46135, United States;3. Department of Chemical Engineering, University of Kentucky, Lexington, KY 40506, United States
Abstract:Most food, pharmaceutical, and chemical industries rely heavily on the supply of free-flowing powders that finds their application in raw materials, additives, and manufactured products. Improper storage conditions combined with environmental factors affect the free-flowing ability of powders. An undesirable transformation of these free-flowing powders into a coherent mass that resists flow is called caking. An important metric that can be used to measure the caking propensity of a material is the tensile strength, which is essentially the resistant stress needed to separate two layers of materials using an isostatic tensile strain. Even though several models have quantified the propensity of caking, the complex nature of interactions between the powder and its micro-environment makes the prediction of caking a challenging task. In the present work, the onset of tensile strength in isomalt with changes in temperature, relative humidity, and consolidation pressures using a shear cell was modeled using a finite element approach. The study found that at a consolidation pressure of 3 kPa and relative humidity of 85±0.1%, an increase in temperature by 5˚C increased the tensile strength of isomalt by a factor of 2. On the other hand, at a constant temperature of 25˚C, an increase in relative humidity from 85±0.1% to 86±0.1% registered an increase in tensile strength by 42.7%. This study also found that an increase in consolidation pressure from 3 kPa to 6 and 9 kPa increased the tensile strength by a factor of 1.79 and 2.54, respectively. The model had good agreement with the measurements and had an overall MAPE of 12.13%. This model can be applied to study the influence of extrinsic parameters on the propensity of caking during storage of bulk solids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号