Abstract: | AIM: To summarize the phenotypes and identify the underlying genetic cause of the CRYBB1 and CRYBB2 gene responsible for congenital cataract in two Chinese families.METHODS: Detailed family histories and clinical data were collected from patients during an ophthalmologic examination. Of 523 inheritable genetic vision system-related genes were captured and sequenced by targeted next-generation sequencing, and the results were confirmed by Sanger sequencing. The possible functional impacts of an amino acid substitution were performed with PolyPhen-2 and SIFT predictions.RESULTS: The patients in the two families were affected with congenital cataract. Sixty-five (FAMILY-1) and sixty-two (FAMILY-2) single-nucleotide polymorphisms and indels were selected by recommended filtering criteria. Segregation was then analyzed by applying Sanger sequencing with the family members. A heterozygous CRYBB1 mutation in exon 4 (c.347T>C, p.L116P) was identified in sixteen patients in FAMILY-1. A heterozygous CRYBB2 mutation in exon 5 (c.355G>A, p.G119R) was identified in three patients in FAMILY-2. Each mutation co-segregated with the affected individuals and did not exist in unaffected family members and 200 unrelated normal controls. The mutation was predicted to be highly conservative and to be deleterious by both PolyPhen-2 and SIFT.CONCLUSION: The CRYBB1 mutation (c.347T>C) and CRYBB2 mutation (c.355G>A) are novel in patients with congenital cataract. We summarize the variable phenotypes among the patients, which expanded the phenotypic spectrum of congenital cataract in a different ethnic background. |