Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice |
| |
Authors: | Peppa Melpomeni Brem Harold Ehrlich Paul Zhang Jian-Gang Cai Weijing Li Zhu Croitoru Anca Thung Swan Vlassara Helen |
| |
Affiliation: | Division of Experimental Diabetes and Aging, Department of Geriatrics, Mount Sinai School of Medicine, New York, New York 10029, USA. |
| |
Abstract: | Advanced glycoxidation end products (AGEs) are implicated in delayed diabetic wound healing. To test the role of diet-derived AGE on the rate of wound healing, we placed female db/db (+/+) (n = 55, 12 weeks old) and age-matched control db/db (+/-) mice (n = 45) on two diets that differed only in AGE content (high [H-AGE] versus low [L-AGE] ratio, 5:1) for 3 months. Full-thickness skin wounds (1 cm) were examined histologically and for wound closure. Serum 24-h urine and skin samples were monitored for N(epsilon)-carboxymethyl-lysine and methylglyoxal derivatives by enzyme-linked immunosorbent assays. L-AGE-fed mice displayed more rapid wound closure at days 7 and 14 (P < 0.005) and were closed completely by day 21 compared with H-AGE nonhealed wounds. Serum AGE levels increased by 53% in H-AGE mice and decreased by 7.8% in L-AGE mice (P < 0.04) from baseline. L-AGE mice wounds exhibited lower skin AGE deposits, increased epithelialization, angiogenesis, inflammation, granulation tissue deposition, and enhanced collagen organization up to day 21, compared with H-AGE mice. Reepithelialization was the dominant mode of wound closure in H-AGE mice compared with wound contraction that prevailed in L-AGE mice. Thus, increased diet-derived AGE intake may be a significant retardant of wound closure in diabetic mice; dietary AGE restriction may improve impaired diabetic wound healing. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|