首页 | 本学科首页   官方微博 | 高级检索  
检索        


The relationship between stress, porosity, and nonlinear damage accumulation in acrylic bone cement.
Authors:B P Murphy  P J Prendergast
Institution:Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland.
Abstract:The long-term survival of cemented hip replacements depends on the ability of the cemented fixation to resist fatigue damage. Damage has been assumed to accumulate linearly (Miner's law) even though it is unlikely to be the case in such a porous brittle material. This study addresses the nonlinear stress-dependent nature of fatigue damage accumulation in acrylic bone cement. Specimens were subjected to a zero-to-tension fatigue load in water at 37 degrees C. A total of 15 specimens were tested, i.e., five specimens at each of three stress levels. The specimens were cyclically loaded to a certain fraction of their fatigue lives and the amount of microcracking present at that time was quantified by counting each crack and measuring its length. This procedure was repeated until the specimen failed. A total of 801 cracks formed in the 15 specimens. All cracks were found to initiate at pores. Crack propagation directions were distributed normally about the direction perpendicular to the applied load at the lower stress levels, but at higher stress, the distribution tended to be broader. At higher stresses, more cracks were produced per pore. The damage accumulation process in acrylic bone cement was found to be nonlinear with the degree of nonlinearity increasing with stress. Furthermore, great variability was found which was attributed to the differences in porosity between specimens. A power law equation is given which describes the predicted relationship between damage accumulation and number of loading cycles as a function of the stress level.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号