Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering |
| |
Authors: | De Felici M Felici R Ferrero C Tartari A Gambaccini M Finet S |
| |
Affiliation: | European Synchrotron Radiation Facility, Grenoble, France. |
| |
Abstract: | Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|