首页 | 本学科首页   官方微博 | 高级检索  
     

肾综合征出血热发病率的小波预测模型
引用本文:吴学森,王洁贞,刘云霞,张娜. 肾综合征出血热发病率的小波预测模型[J]. 中国公共卫生, 2004, 20(9): 1031-1033
作者姓名:吴学森  王洁贞  刘云霞  张娜
作者单位:1. 山东大学公共卫生学院卫生统计教研室,济南,250012;安徽蚌埠医学院
2. 山东大学公共卫生学院卫生统计教研室,济南,250012
基金项目:国家自然科学基金资助 (30 0 70 677)
摘    要:目的 建立季节性水平变化趋势时间序列小波预测模型,提高肾综合征出血热(HWRS)发病率的预测步长及精度。方法 对原始序列进行多层小波分解,分解后的各层分别用自回归滑动平均(ARIMA)模型进行预测,将各层的预测值合并作为原序列的最终预测值。结果 小波预测模型4步预测精度为82.45%,而ARIMA建模的4步预测精度为67.97%。结论 用小波预测模型对水平变化趋势的HWRS作短、中期预测是有效、可行的。

关 键 词:小波分析 肾综合征出血热 预测 模型
文章编号:1001-0580(2004)09-1031-03
修稿时间:2004-01-31

Model of wavelet - based analysis and forecasting for incidence rate of hemorrhagic fever with renal syndrome
WU Xue sen,WANG Jie zhen,LIU Yun xia,et al.. Model of wavelet - based analysis and forecasting for incidence rate of hemorrhagic fever with renal syndrome[J]. Chinese Journal of Public Health, 2004, 20(9): 1031-1033
Authors:WU Xue sen  WANG Jie zhen  LIU Yun xia  et al.
Affiliation:WU Xue sen,WANG Jie zhen,LIU Yun xia,et al.Department of Health Statistics,School of Public Health,Shandong University
Abstract:Objective To improve the forecasting precision and the step-length of the incidence rate for Haemorrhagic Fever with Renal Syndrome(HFRS),this paper proposed the forecasting method of the seasonal non-tendency time series called wavelet forecasting model.Methods By wavelet decomposing,each level series was forecasted by the ARIMA model.The final forecasting results were composed of these levels forecasting values.Results The 4-step forecasting precision of wavelet forecasting model and ARIMA model was 82.45% and 67.97% respectively.Conclusion Wavelet forecasting model was effective and feasible for the seasonal non-tendency HFRS's incidence rate prediction in the short and the middle term.
Keywords:wavelet analysis  HFRS  forecasting  model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号